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1. Introduction

Cruise missiles over land and sea cluttered background are serious threats to Infrared Search
and Track Systems (IRST’s). In general, these threats are stealth in both the infrared and radio
frequency bands. That is, their thermal infrared signature and their radar cross section can be
quite small. Future predicted threats, i.e. the next generation of cruise missiles, will be even
more difficult to detect at a sufficient range to counter. Further, low elevation trajectory objects,
such as sea skimming missiles, have radar signals with large amounts of temporally and spatially
correlated interference called multipath. This multipath problem remains an enormous obstacle
to existing trackers. Hence, new technology is needed which will allow for the timely detection,
tracking, and identification of such threats.

IRST systems are one component of a multisensor suite which can meet the technical challenge
of the timely detection/track/identification of low signal-to-(noise+clutter) ratio (S(N+C)R)
targets. The multisensor suite should include an IRST, Radar, and a coherent laser (Lidar). We
envision a cueing hierarchy where the IRST can cue the Radar or the Radar cues the IRST. Once
a candidate track is established the Lidar can be used to identify the target by its micro doppler
signature.

In this report we describe the developed computationally efficient algorithms and adaptive archi-
tecture with optimized overall performance (statistical and computational) for real-time reliable
detection and tracking of low-observable targets in IRST systems. Despite the fact that we fo-
cus on an IRST against cruise missiles over land and sea cluttered backgrounds, the results are
equally applicable to other sensors (e.g., Radar, Lidar).

In the research we concentrated on the three interrelated problems: (1) efficient clutter suppres-
sion; (2) development of the adaptive track-before-detect (TbD) architecture based on optimal
nonlinear filtering (ONF); (2) development of efficient algorithms for detection of a prior: un-
known number of targets that may appear and disappear at unknown points in time.

The report is organized as follows. In Section 2 we formulate the problem, describe a structure of
the system to be developed, outline popular track-before-detect methods that are in current use
and suggest an alternative method, which is based on the optimal nonlinear filtering. In Section 3
we describe basic models and assumptions on signals and clutter that are used in developing of
signal processing algorithms (clutter suppression, track-before-detect) and detection algorithms.
In Section 4, two clutter removal algorithms are presented based on nonparametric and semi-
parametric spatio-temporal filtering. Section 5 is especially important. Here we describe an
optimal nonlinear filtering technique that is used for track-before-detect of very low observable
targets. Also, we show that the proposed method is a complete generalization of the multi-
dimensional (spatio-temporal) matched filtering (particularly, 3D matched filter). Furthermore
it is shown that the spatio-temporal matched filter coincides with the developed optimal nonlin-
ear filter when a target moves according to deterministic trajectory. In Section 6 we develop three
track appearance/disappearance algorithms all of which take into account requirements specific
for surveillance systems. The results of simulation and processing real IR data obtained from
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SPAWAR (Space & Naval Warfare Systems Center, San Diego, CA) are presented in Section 7.
Finally in Section 8 we provide a conclusion and the plan of our future research.

2. Problem Formulation and Background

The generalized block-diagram of the system under investigation is shown in Figure 1. We
develop both the signal processing architecture (clutter removal algorithms and TbD algorithms)
and track detection algorithms.

Signal Processing Block

| Cll\;l tter Supp:e.s sion Track-Before-Detect |
IR Frames, | (Son[.)arame ‘;‘c or (Optimal Nonlinear | | Track Appearance/
Preprocessing Sen:{p a';ame r:;l Spatio-Temporal J Disappearance
pal El‘:)]; ! :}I::)o Filtering) | Detection
| I
| |
e - J
Detections (Blips)

Figure 1. Generalized block-diagram of the developed system

New algorithms concerning the stages of data processing specified above are developed under the
following realistic conditions.

e Cluttered background is much more intensive than both equivalent intrinsic (instrumental)
noise of the sensor and signal intensity of the targets to be detected. This causes a necessity
of practically complete suppression of a clutter.

e Exterior conditions of observation are characterized by an extremely high variability and
prior uncertainty and may not be predicted with sufficient accuracy.

e Prior information that is needed to develop ideal (Bayes) data processing algorithms is not
available. Particularly, statistical models of signals and moreover exterior background as
well as the models of changing target situation are extremely unreliable. Such models can be
useful only as tools for performance evaluation in certain scenarios but not for development
of data processing algorithms. Practical data processing algorithms should be developed
on the base of sequential application of robust, adaptive and minimax methods that are
invariant to the prior uncertainty.

e In practice the estimated parameters of targets (for example, trajectory parameters) should
be guaranteed for any degree of prior uncertainty. Specifically, each estimate should be
supplemented with an appropriate domain of minimum size that contains the real unknown
value of estimated parameter with 100% (or at least (1 — £)%) assurance.




4 CENTER FOR APPLIED MATHEMATICAL SCIENCES, USC

2.1. TbD Methods: Merits and Drawbacks. The most challenging problem for an IRST
system is the detection of a maneuvering target against a strong clutter background. To illustrate
the importance of this task, we remark that under certain conditions a few seconds decrease in the
time it takes to detect a sea/surface skimming cruise missile can yield a significant increase in the
probability of raid annihilation. The problem of detection is extremely difficult in low S(N+C)R
when localization of the target based upon a single non-stationary image is impossible. In this
case one has to align successive frames according to typical patterns of target dynamics and any
results of “preliminary” tracking. This approach to detection of a low S(N+C)R target is usually
referred to as “track-before-detect” (TbD). Its success depends crucially on the quality of the
“preliminary” tracker. Thus, the development of the efficient coherent signal processing based
on the ThD methodology becomes crucial point in the low-observable target detection problem.
In contrast to other TbD methods, we solve this problem by applying optimal nonlinear filtering
approach.

We now overview several popular methods for tracking before detection that are in current use.

2.1.1. Spatio- Temporal Matched Filters and Velocity Filter Banks. Given a sequence
of frames, consider the problem of detecting a small (unresolved) target against a clutter back-
ground. The probabilities of errors can be decreased by applying a 3—D (spatio-temporal)
matched filter prior to detection (thresholding) operation. If the spatial distribution of the tar-
get and its velocity remain unchanged (i.e., if targets move with known constant speed along
a line on the plane) and the noise and the clutter are Gaussian processes, the 3—D filter is
the optimal method of detection, see [38]. It is easily shown that the same result is true for
more dimensions, i.e. a (m + 1)—D matched filter is an optimal method of processing under
aforementioned conditions (m is the spatial dimensionality). Also, under these conditions the
“target” component of the multi-dimensional matched filter separates into spatial and temporal
components. The temporal component is usually called a velocity filter.

Typically the target velocity is unknown and hence the single velocity filter cannot be used. This
problem is usually overcome by hypothesizing velocities and implementing a velocity filter bank
(see, e.g., [43, 48, 50]).

One of the main drawbacks of spatio-temporal matched filters and other modifications such as
banks of assumed velocity filters is that they are not able to work with maneuvering targets.
Performance of the algorithms is substantially degraded in the presence of velocity mismatch or
in event of target maneuver.

2.1.2. Dynamic Programming Methods. The Dynamic Programming methods for TbhD
showed a big advantage over the conventional MHT method and over the 3—D matched fil-
ter with velocity mismatch [1, 2, 7, 21, 57]. Particularly the results of Fernandez et al. [21] show
that application of the Viterbi TbhD algorithm over 10 frames of IR data yields about a 7 dB
improvement in detection sensitivity over conventional thresholding/peak-detection procedures.
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This approach avoided problems with velocity mismatch and could handle targets with slow
maneuvers. However, good performance of dynamic programming algorithms is observed for
moderate S(N+C)R (over 3 dB after preprocessing and clutter suppression) with rapid degra-
dation as S(N+C)R. reduces further [57]. In addition, the computational complexity of these
sophisticated methods is fairly high.

2.1.3. Extended Kalman Filter. To date, the extended Kalman filter (EKF) along with minor
variations have been the dominant algorithm technology in real-time tracking. It is the basis
for current practical single- or multi-target trackers for point equivalent targets. A major reason
for its success has been the fact that the EKF has offered a reasonable compromise between
real-time operation and accurate performance in many nonlinear problems. On the other hand,
the EKF is a suboptimal and completely heuristic algorithm whose efficiency varies from case to
case. For instance, the EKF is unstable in situations that involve acute maneuvering, missing
measurement, low SNR, multipath, and many other situations where the posterior distribution
may not be approximated well enough by a Gaussian distribution. It is very difficult, if even
possible, to develop rigorous evaluation metrics for assessing the quality of data processing based
on the EKF technology. Improvements to the EKF (e.g. iterated EKF) work satisfactory in a
number of important applications where the EKF fails, but still, it is difficult to overcome the
fundamental limitations of the EKF algorithm that stem from its dependence on the assumption
that the posterior distribution may be well approximated by a Gaussian distribution. The typical
posterior density built upon the realistic IR image is shown in Figure 17, Section 7 . One sees
that it has multi-peak form and hence is very far from being Gaussian. Our experiments show
that EKF is typically fails for this kind of data.

2.1.4. An Alternative TbD Method — Optimal Nonlinear Filtering. In spite of the
aforementioned shortcomings, the above outlined methods remain the basis for the great majority
of existing signal processing systems. In particular, until recently no other information technology
was able to effectively compete with the EKF in target tracking.

However the situation has changed with recent advances in the mathematical theory and algorith-
mic support for optimal nonlinear filtering (ONF). These advances coupled with improvements to
modern digital hardware technology make optimal nonlinear filtering an attractive alternative to
the multi-dimensional matched filter, dynamic programming based algorithms and EKF in many
practical and important applications. These include signal processing for infrared and acoustic
sensors, imaging radar and sonar (including SAR and SAS), and other passive and active sensors
[17, 45, 49].

Advanced optimal nonlinear filters can now provide:

e real-time operation;

e optimal, theoretically sound solutions of the full nonlinear problem;

e distributional versatility (no constraints on the form of prior or posterior probability distri-
butions);
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e superior accuracy and robustness;
o facility to effectively incorporate realistic physical models;
e explicit quantitative performance metrics (exact error estimates, confidence areas, etc.).

Our analysis of advanced algorithms based on ONF technologies shows great promise in: track-
before-detect of unresolved targets in low S(N+C)R (up to —6dB after preprocessing); fusion
of imaging and kinematic data for target identification; tracking of agile extended targets in
cluttered environment as well as with certain other applications.

We argue that just as the EKF superseded the oo — § —y trackers, so the optimal nonlinear filter
is set to replace the EKF as the dominant tracking technology within 10-15 years.

In Section 5 we describe the ONF techniques that will be used in defining and developing the
appropriate technology for application in an end-to-end IRST signal processing architecture.
The architecture will be sufficiently flexible to allow for an adaptive optimization of the sig-
nal /discrimination processors utilizing existing engineering parameters. This adaptive optimiza-
tion will use the output of an EOQ/IR sensor diagnostic tool to utilize current meteorological and
environmental information as well as current intelligence on likely threat scenarios.

3. Signal and Observation Modeling

It is assumed that a sensor has m—component resolution capability (for radar typically m = 6, for
IR/EO m = 4). By r = (r1,...,Tm) will be denoted a phase coordinate vector (for IRST typically
angles and angle velocities of an object in a certain coordinate system). The sensor carries out
a periodic surveillance of definite area in m—dimensional domain D™ C R™, where R™ is the
m~—dimensional Euclidean space. After standard preprocessing the result of one observation step
is a frame of measurements,

Z(n)=S(n)+bn)+n(n) n=12,..., or

(31) Z(n) = 1 Z:m)] = 15:(0) + bi() + @)l = L.\ N,

where §(n) = ||Si(n)|| is a signal from target, b(n) = ||bi(n)|| is an exterior background (clutter),
and 1 = ||mi(n)]|| is a noise of the sensor. (Here we assume that after preprocessing sampling of
data is done in discrete points d;, i = 1,... , N, uniformly in the area D™ (i is a pixel).)

The noise is assumed to be zero mean and uncorrelated in both time n and space i, En;(n) =0,
En;(n) = 02 (E is a symbol of expectation). The clutter is defined as

(3.2) b;(n) = b('r’;~ + d(n),n)

where b(r,n) is a function describing the background (spatial distribution of the clutter) after
preprocessing in the point 7, and d(n) = (61(n), ..., 0m(n)) is an unknown current bias of sensor
coordinate system with respect to the reference one (due to the jitter).
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The signal component is modeled as
k(n)

(3-3) Si(n) =) Aj(n)h(ri + 8(n) — r4(n))
J=1

where h(r) is a normalized sensor function; k(n) is an unknown total number of targets at the

" moment n; A;j(n) and 7;(n) are unknown signal intensity and coordinates of the jth target,

respectively.

It is assumed that the clutter b(r,n) has a relatively big spatial variance (the change of b(r,n)
between two nearest values of r; is comparable with the maximum value of b(r,n)). Besides,
b(r,n) varies locally as fast as the signal function does (in spatial coordinates). Even in cases
where these assumptions do not exactly hold, the algorithms that rely on them will be robust,
which is the most important requirement. The second assumption shows that if only spatial
information is used, then the background may be interpreted as a target. Thus spatial filtering
alone is not sufficient for clutter suppression and temporal filtering is needed. We always assume
that b(-) is an arbitrary unknown function of » and slowly changing function in n: there exists
such T that |b(r,n + T) — b(r,n)| < o,. The latter assumption, which often holds, shows that
variations of the clutter in time are caused mainly by uncontrolled vibrations §(n) of the sensor.
These vibrations are unknown and unpredictable except for a natural restriction, |§(n)| < A,
imposed on the absolute value of bias of coordinate system. No assumptions on statistical
behavior of clutter is made. It is our belief that such popular models as homogeneous random
field, especially Gaussian, are valuable only for purely academic research and lead to highly
non-robust filtering algorithms.

Perhaps the most important feature of our approach to algorithm design is that we refuse to use
any artificial and unreliable statistical models of b(r,n), 8(n), k(n), and A;(n). The algorithms
developed on the basis of such models fail even for small deviation of a model from reality.
The essence of the new suggested approach is the development of algorithms that are invariant
and/or adaptive with respect to prior uncertainty. The specific feature of the problem is its
extremely high dimensionality. The value of N can be of the order of 10° — 10® and the total
number of targets can be several hundreds. Thus, along with the mathematical issue of data
processing, serious attention should be paid to the computational complexity, parallelization and
HPC realization.

4. Clutter Suppression

Two classes of algorithms for background filtering are proposed. In either case there are two
basic problems to be solved: (a) to transform the sequence of input frames into the new frame
such that the clutter would be reduced and the signal would be preserved (clutter removal);
(b) for every n the location of the coordinate system of the sensor (i.e. the bias d(n)) should
be estimated with maximum possible accuracy (jitter compensation). Below we propose two
algorithms that allow the first problem to be solved effectively. Jitter compensation algorithms
will be developed in the near future.
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4.1. Nonparametric Method. The first class is relied on the nonparametric regression ap-
proach to estimation of the function b(r,n). Our goal is to build a nonparametric clutter estimate
such that the residuals between the original data and its smoothed version (estimate) would be
reasonably approximated by signal plus noise models. That is, the estimate b(r,n) of the b(r,n)
should be built in such a way that in the filtered frame Z(r,n) = Z(r,n) — b(r,n) the signal
would be preserved, while the clutter would be removed almost completely.

Kernel methods provide a powerful tool for such analysis due to both theoretic optimality (see
[19, 23]) and computational transparency. In addition these methods are invariant to statis-
tical properties and variations of clutter. Kernel estimators are weighted moving averages of
observations

- 1
b(r,n) = = Z(r n)K(“‘” l~-f2)
=, N n;;m ’ N ") N )0
where N, are window sizes in corresponding directions, K(-) is a deterministic m—dimensional
kernel (recall that » = (r1,...,7m)). A product kernel with univariate kernels K;, 1 = 1,...,m,
provides a popular example.

Note that in the 2D case (m = 2) a so called ‘local mean removal’ procedure used for clutter
rejection in a series of papers by Reed et al. [38, 39)] is equivalent to a kernel estimator with
a product kernel K generated by uniform kernels Ki(z) = Ka(z) = 0.5If4<1}. It is shown
in Section 4.1 that the proposed adaptive nonparametric methods based on recent advances in
nonparametric estimation (see e.g. [18], [27]) perform much better than the aforementioned ‘local
mean removal’ method.

4.2. Semiparametric Filtering. The second method (semiparametric) is based on the adap-
tive spatio-temporal auto-regression

n L
(4.1) Zin) = Zi(n) — > Y ai(r)Zu(n)

T7=n—-T [=0

where Z(n) = || Zi(n)|| is the filtered frame of input data Z(n) = ||Z;(n)||; Zu(n) are the values
of Z;(n) in some vicinity (spatial filtering window) of points 7;; L is the number of points r; in
the window; a;(7) are some coefficients.

The major problem is the choice of optimal coefficients a;(7). They must be calculated adap-
tively to guarantee minimum of empirical mean-square (MS) value of the filtering residual noise
(internal noise and background residual) for every time moment n. Such a criterion provides
minimum of MS residual noise in the frame for every time n and is invariant with respect to
statistical properties of the background b(r; 4+ d(n),n) and noise. The algorithm consists of:

1. Computation of empirical correlation matrix (T'L x TL) for spatial window L and temporal
window T'.

2. Calculation of the optimal weights a;(7).
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3. Linear transform of Z;(n) into Z;(n) according to (4.1).

In general the algorithm is nonlinear because of the nonlinear dependence of a;(7) on Z;. This
algorithm allows us to suppress any background regardless of its variation in time. However,
it solves only the first part of the problem — it does not estimate a drift of sensor coordinate
system to correct coordinate measurements on the stage of detection (jitter compensation). An
algorithm that allows us to estimate d(n) and hence to compensate jitter will be developed in
the near future.

5. Optimal Nonlinear Filtering for TbD

5.1. Modeling for TbD. Our philosophy in addressing the low S(N4+C)R detection problem
(regardless of the type of a sensor being used) is that the farther the thresholding operation
may be postponed the better. In the context of track before detect, we assume that the data
are collected at discrete times while the target dynamics is a continuous time process. To be
specific, assume that the measurements Z(k,r) = Z(tx, ) are collected at discrete time moments

tk, k =0,1,2,... and the relationship between the observation and target location is modeled
by a nonlinear measurement equation of the form
(5.1) Z(k,r) = S(k, X, r)+ bk, 7)+ V(k,T),

where, as before, r represents the spatial coordinate in the phase space, b(k, ) is a sequence of
deterministic (unknown) functions representing cluttered background, by X is denoted the true
location of the target at time ¢ = ¢ and by V(k,r) is denoted the measurement noise process
(sensor noise). For simplicity we first suppose that there may be only one target in the scene, i.e.
the signal S(k, Xy, 7) is described by (3.3) where k(n) = 1. Also we will neglect the platform
instability (jitter) assuming §(n) = 0'. Under these conditions

(5.2) S(k, Xk, r) = A(k)h(r — Xy),
where h(r) is a normalized sensor function and A(k) is an unknown signal intensity.

We further define Z*(r) = (Z(1,7),..., Z(k,r)) to be the concatenation of all measurements up
to time ¢ in the space point 7.

The expected range of possible “behaviors” of the target is modeled as a Markov process. Often
this process may be well described by a randomly perturbed multi-dimensional linear or nonlinear
dynamical system

X; = f(X:) + oW, t>0,

where W, is another noise process that describes uncertain and unpredictable target motion; f(-)
is a known function. Modeling of the state and observation is normally based upon physics. The
models for the state process usually represent the a priori knowledge about physical, tactical,
etc. characteristics of the target while the observation model is based upon the physics of sensors,
clutter structure, operational environment, and so forth.

1This is the case if the instability is compensated either by electro-mechanical stabilizators or by estimating.
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5.2. Optimal Spatio-Temporal Nonlinear Filtering: The Basic Algorithm. The output
of the ONF is the functional time series {m(r)}x>1 of joint posterior densities (JPD) which
measure the likelihood at the time moments t; that the vector of target features parametrized
by X is in close proximity of the grid point .

Computation of the JPD usually splits into two separate procedures: on every time step, spatio-
temporal filtering for clutter removal is done first (see Section 4), and then the spatio-temporal
nonlinear filtering is performed to estimate the target location. After clutter suppression proce-
dure the clutter is decorrelated. We thus can include it into the noise component V'(k,r) (see
(5.1)) and concentrate only on the second procedure.

It is a standard fact (see e.g. [24], [42]) that the JPD is given by the formula

(5.3) mi(r) = -fp—p:((f)%

where the function pi(r), called the unnormalized filtering density (UFD), propagates in time
according to the following recursive equation of the predictor-corrector type:

(5.4) pe(r) = exp{(R*h(r,"), R Z(k,")) — % |R_1h(r, -)Iz}Tkpk_l('r'), k=1,2,...,

where R is the covariance of the observation noise V, and the predictor Typ—1(r) is a solution of
the Fokker-Planck-Kolmogorov equation corresponding to the state process subject to the initial
condition px_3(r), i.e. u(t,r) = Ttpk 1(r) is a solution of the equation

Ou(t, 1
(5.5) U(;t " —2 Z %i o Br, Z ors (fi(r)u(t,r)), t€ (br te-1l,
: =

u(0,7) = pra(7),
where {a; ;} is the covariance of the state noise and m is the dimensionality of X';. The posterior
moments of X = X, can be computed now by integration of the respective polynomials against
the JPD (7). For example, the best mean square estimate of X},

X = /rwk(r) dr.

Recall that we consider a general problem assuming that = belongs to a m—dimensional Euclidean
space (phase space) R™ (our main concern in IRST problem is m = 4 if the problem is solved in
the initial “resolution” space (angles and angular velocities) or m = 2 if trajectories are projected
on the plain).

Now, let {e¢(r)}een be a complete orthonormal system in L?(R™). Projecting (5.1) on this basis,
we can rewrite the observation process in the coordinate form:

(5.6) ZE=h(X, )+ V¥, £=12,..., k=12,...,K,

where

7t = / e dr, K@= [ bynerdr, Vi= [ Viredr)dr

RrRm Rm
and V) are independent Gaussian random variables.
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Let F(-) be a given function such that E |F(X ¢)|> < 0o, Vt > 0. In general, the optimal nonlinear
filtering deals with obtaining the best mean square estimate of F'(X;,), given the measurements
Z*r) = (Zy(r),...,Zk(r)), € R™. This estimate is called the optimal filter and will be
denoted F'(k).

By T; denote the solution operator for the Fokker-Planck-Kolmogorov equation corresponding
to the process X. The optimal filter F'(k) = E[F(X,) | Z¥] is given by the formula

o = B

where the UFD p;(r) was introduced above. This density obeys the recursive relation

pO(r) = ’/T('T'),

S8 p = ex (Aihﬁ(r)z,s—%fﬂh‘(r)ﬁ)m_l(r), k=12...
=1 =1

Additional notation:
dmn = (em,TAen>7 qfnn = (heemvTAen>a qugn = (hehjem;TAen)a

"pm(o) = <p7 em>, Fn= (F, em)a
where (F, g) = [pm F(r)g(r) dr. Note that these quantities can be computed off-line before any
observations become available.

Let L= {£:£ < M} and F; be the approximation to the optimal filter F(k).

We propose the following algorithm for computing the optimal nonlinear filter F(k), which will
be called the Spectral Separation Scheme or the S® algorithm.

1. Set a cut-off level M for the number of basis elements.
2. Before the observations become available compute:

Bo(r) =Y ve(0)ee(r) and Wo[f] =) (0)F%.
<M <M

3. When the measurements (Z{), k=1,2,... ,K, £ € L C L become available:
a): compute recursively

PEO) = ¥m(0), VEE) =D Quu(ZR)E(k—1), k=1,2,..;

n<M

A
Qun(Z8) = Gmn + B Zipn + A Y ZiZlgt + 5 Y (20D = 1) g

teL 250, 5€L teL
b): compute
Be(r) = Y vF(k)ea(r), Uk[Fl = vj(k)Fs Fr= U4[F]/T[1].

<M <M
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The block diagram of the Spectral Separation Scheme (S® algorithm) is shown in Figure 2. It
is clear that the -above algorithm allows for an adaptive, dynamic interplay between data and
computations. Indeed, it does not involve solving of PDE’s on-line and is recursive in time.
Furthermore, it is also spatially recursive. These properties are very important since they allow
adaptive sequential multi-resolution filtering to be performed. Observe that in order to achieve
the effect of multi-resolution one has to use local hierarchical bases {¢;}, for example wavelet
bases [25].

wik—1) |
observation| Optimal Nonlinear Filter
—_—>
yk)=Y, Qyk-1)

Z = 0
y(k)
Estimation D, Y,, Fi

P (r)= X, v, (k)e,(r)

IsM

Q —precomputed matrix

Figure 2. S® algorithm (on-line part)

5.3. Multi-Dimensional Spatio-Temporal Matched Filter as a Special Case of Nonlin-
ear Filter. For the sake of simplicity let us consider the basic formula for updating the filtering
density in the optimal nonlinear filter in the 3—D case where the target motion is projected on
the plain. The modification for the (m + 1)—D case with arbitrary m, particularly for m = 4,
is straightforward. The grid space will be denoted by {z;;}. Suppose that the solution of the
Fokker-Plank-Kolmogorov equation (the mean motion dynamics of the target) is given by the
operator Tx and observations are made at time moments ¢; = KA on the observation space grid
{z;;} with additive Gaussian white noise:

(59) Zij(tk) = h(th - xij) + Ufij(tk),
where h(-) is the target signature signal and &;;(t;) are i.i.d. standard Gaussian variables.

Then by (5.4) the updating formula is

pk —-exp{ Zh x‘LJ ij tlc 2% 2Zh($ ng) }TApk 1( )
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In the above formula, the part Taps_1(z) is the prediction part, i.e. the best possible guess (based
on known target trajectory dynamics), what the probabilities to find the target in various areas
of the observation region would be if there were no observations available at the time moment
ty. The exponent part is the correction part, i.e. after receiving the observation at time t;, the
prediction part is amplified or attenuated, depending on the expression inside the exponent.

One notable fact is that the amplification or attenuation is directly related to the output of the

well-known in engineering community single frame matched filter (spatial (2—D) matched filter)
= Z h(.’L‘ - xij)Zij(tk)-
1,J

Indeed, the filtering densities are amplified only at those points where the output of the matched

filter exceeds the value of
' 1
1E2 — § : 2

and attenuated elsewhere. Here E? is the energy of the signal which of course does not depend
on z.

This establishes a strong connection between a spatial matched filter and the optimal nonlinear
filter. Even more importantly, the optimal nonlinear filter is equivalent to the spatio-temporal
matched filter (or assumed velocity matched filter) if the movement of the target occurs along a
deterministic trajectory. In that case the operator T degenerates into an operator that shifts
the values of the function along the known deterministic trajectory. For simplicity, let us assume
that the target moves in a straight line with known constant velocity v. Then

Tap(z) = p(z — vA),

and it is easy to see that for any k > 1

k—
() = ¢ exp{ Z Z h(z — z;5 — vA) Z;(ty) — ——1—2 Z Z h(z — zij — EvA)Z}po(x — kvA).

£=0 i3 =0 i,

Notice that the first part in the exponent in the above formula,
k-1

Mk(x) = Z Zh(m - LL',;]' - ZUA)Zij(tk) y

£=0 iyj

exactly coincides with the usual assumed velocity matched filter and the second part

257 Z Z Wz — 3 — bvA)? = —k

=0 1,5
is nothing but the accumulated SNR. Thus, if we assume that the initial density is a delta-
function, then statistical inference base on Mj(z) and pg(z) will be the same. Particularly, the
points of maxima of Mj(z) and pi(z) coincide.

A similar argument can be applied to any dimensions. (Recall that in general we are interested
in the (m + 1)—D case, » = (r1,...,m), (m + 1)—th component is time.) The final result is
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exactly the same: in case of deterministic trajectory the (m-+1)—D matched filter and the optimal
spatio-temporal nonlinear filter coincide with the accuracy to the deterministic transformation.

We stress that the developed optimal spatio-temporal nonlinear filter does more
than the spatio-temporal matched filter does. It is a generalization of the multi-
dimensional spatio-temporal matched filter and coincides with it for targets that
move along deterministic trajectories. In general, however, the ONF predicts the
trajectory and allows us to align frames coherently even for acutely maneuvering
targets when the (m+ 1)—D matched filter fails.

6. Track Appearance/Disappearance Detection

6.1. Preliminaries. A problem of detecting target tracks that occur (appear and disappear) at
a priori unknown points in time is a typical abrupt change detection problem. The change-point
detection problem has been actively researched during the last three decades (see, e.g., [22, 34,
37, 41, 46, 44, 52, 53, 54] and references therein). Heuristic procedures such as Shewhart’s charts
and some modifications appeared in the late twenties and early thirties. Detection procedures,
which are in current use, were initiated by Girshik and Rubin [22] and Page [34] for the problem of
detecting a change in a mean of i.i.d. Gaussian sequence and by Shiryaev [44] in the general (but
i.i.d.) case. There are two major competitive procedures: the Shiryaev-Roberts-Girshik-Rubin
algorithm [41, 37, 54, 44] and the Page’s (or CUSUM - cumulative sum) procedure [34, 46, 55]°.

There are two major disadvantages to both algorithms:

1. Only one change in data is assumed, i.e. in our context the moment of target disappearance
is ignored.

2. The aforementioned change-point detection procedures have optimal properties only in the
i.i.d. case in the following specific sense: they minimize the mean detection delay under
constraints on the mean time between false alarms for exactly specified pre-change and
post-change distributions.

These drawbacks make the conventional change-point detection procedures impractical in multi-
target surveillance problems that involve non-i.i.d. observations and when one needs not only to
detect a particular target (with unknown position) but also to discriminate between false alarms
and true tracks. One appropriate criterion for our purposes is to fix probabilities of false alarm
and detection in a fixed size sliding window and to minimize the detection delay. Or, alterna-
tively, one may require to detect the track with fixed or maximum probability during the fixed
time and with minimum detection delay. Also it is imperative to design the decision statistics
that will account for unknown target location and moment of its disappearance. Otherwise the
problem is meaningless. Neither of the above mentioned algorithms may be directly applied in
this context. However, we will show that the CUSUM-type procedure and the quasi-Bayesian
(Shiryaev-Roberts-Girshik-Rubin type) procedure with specially designed thresholds are useful

2See also [40, 54] for reasonable modifications and ideas that are useful for surveillance systems.
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tools, especially in the problem of detection of a single target that appears and disappears at un-
known times. Moreover, it turns out that the thresholds can be chosen such that the predefined
false alarm rate is fixed for a large class of noise and signal models, not necessarily for the i.i.d.
models. This innovation is very important for our applications, since it removes the restrictive
i.i.d. assumption, which is typical for previous work in change-point detection. In particular, it
allows us to design thresholds for adaptive algorithms.

Now we summarize the basic requirements that should be satisfied in realistic problems of de-
tection of target’s track appearance/disappearance:

e detection algorithms should be invariant relative to the completely unknown moments of
abrupt change (the prior distributions of appearance/disappearance moments are unknown);

e detection algorithms should be adaptive and use estimates of unknown target location based
on TbD;

e the frequency of false detections or the false alarm probability is limited at the specified
level;

e the probability of correct detection should be maximal during the fixed time interval;

e the mean detection delay should be made as small as possible.

We propose the sequential algorithms that meet all these requirements (and even more, see Algo-
rithm 3 in Section 6.5). The algorithms are based either on the generalized CUSUM statistic or
on the quasi-Bayesian statistic. These statistics are, in essence, score functions that characterize
the likelihood ratio of hypotheses on signal presence and absence. Specifically, the generalized
CUSUM statistic is the likelihood ratio maximized over unknown moments of appearance and dis-
appearance and the latter statistic is the average likelihood ratio with respect to flat (improper)
prior distributions of these moments. The statistics are computed either in a sliding window of a
fixed size or on the semiinfinite interval (up to the current moment). In both cases the decision
statistics are compared with thresholds that depend on a given false alarm rate (probability of
false alarm or frequency of false alarms). It turns out that in many cases the generalized CUSUM
procedure may be reduced to the conventional CUSUM without loss of statistical performance.
To be precise, if the major goal is to detect the fact of target’s appearance (but not the fact of
its disappearance), than the unknown moment of target’s disappearance should be considered
as a nuisance parameter. In this case the CUSUM is the optimal algorithm, i.e. the unknown
moment of target’s disappearance does not affect the structure of the algorithm, but only its
performance (see Section 6.3 and Section 6.4 for details). The same is true for the quasi-Bayes
procedure. If, however, one has to detect multiple targets, then it is important to detect both
track appearance and track disappearance (as soon as possible). Moreover, in this case it is also
important to have a special logic to discriminate between false alarms and true tracks. In this
“multi-target context” the conventional CUSUM-type procedures do not solve the problem but
still may be used as a part of more sophisticated algorithms (see Section 6.5 for some discussion).

It should be mentioned that the problem of signal detection with random appearance and dis-
appearance times in ideal conditions (complete prior information) was solved by Tartakovsky
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[56]. The results of this work show that the optimal Bayes solution requires, in general, com-
putation of the 5—dimensional sufficient statistic and is completely impractical. Thus even the
availability of the required prior information, particularly knowledge of prior distributions of
appearance/disappearance moments (which are usually unknown), does not help in practice.

6.2. Problem Formulation and Model Description. Let Y;, k =1,...,n, denote the data
obtained up to the current time n. Generally, the data Y; = {Zy(r;),7 = 1,..., N} represent the
whole “spatial set” collected from the frame of observations (after preprocessing) at time & or
the part of these data (in some “channels”). If the clutter removal procedure is first performed,
then (after spatio-temporal filtering) the clutter is decorrelated. Thus, it is reasonable to assume
that {Y;} are i.i.d. with the density p;(y) if the target is present and with the density po(y) if it
is absent3. The density p; (Y% | 6x) depends on (in general unknown) vector parameter f, which
characterizes the spatial location of the target at moment k. First, for the sake of simplicity
we assume that the target dynamics is known and hence the 0y is fixed and known. The exact
models with the account of TbD and corresponding adaptive algorithms will be defined later on
in Section 6.8 and Section 6.9 (see also Section 6.6 in the general case). '

By Ay = log’lli(% denote the log-likelihood ratio (LLR) for the single observation Y, and by A
and + the unknown moments of target appearance and disappearance, respectively. Under our
assumptions the data Yi,...,Y)_; are i.i.d. according to the density po(y), Ya,...,Y, are iid.
according to py(y) and Y,41,Y,4o,...,n again follow py(y). We assume nothing about A and
except for the natural constraint v > A. In the language of hypotheses testing the problem of
the track detection may be formulated as testing of the hypotheses

“Hj 1 m : track appears at A = and disappearsat y=m, 1<I0I<n, m2>I1+1";
“H, : track does not appear, i.e. A € [1,n]”.

Alternatively, the hypotheses may be written in the form

“Hipy : p(Y]") = Pan( Yl)—Hpo(Y;c X le (Vi) x H po(Y2)”
k=vy+1

“Hy : p(Y) = po(Y) = Hpom)”
k=1

6.2.1. Generalized Likelihood Ratio Statistic. By L, denote the generalized LLR,

p)\,’)’(
L, = 1 ————— = _;_ A
" n}?vx o8 pO( 1) ,{g’f%{k =) i

3The derived algorithms can be easily modified and generalized for more general models that include correlated

and non-homogeneous observations, see comments below and Section 6.7.
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It is easily shown that the statistic Ly satisfies the following system of recursive relations:
(6.1) Lk = max(Lk_l, Uk) = Lk__1 + (Uk - Lk_1)+,
(6.2) Uk—'——Ak-I—U,:__l, k=1,...,n,
with the initial conditions Ly = Uy = 0. Here y* denotes a non-negative part of y, i.e. y* =
max(0,y). Indeed,

Y
L, = max (ma.x ZAk> = max(Uy,...,U,) = max(L,—1,U,),

where for any k > 1

k k-1
U, =: max ZA = max [Ak, max (Ak + ZAS)] = Ay + max(0, Ug—1) .

1<A<k—1
s=A

6.2.2. Generalized Average Likelihood Ratio Statistic. Introduce the following statistic

G, = max/ p'\"Y(Yl d\ = maxZ Hexp (Ag) .
0

K Po (Yn 7= =1 k=A
It is easy to see that
Gn = max(Rl, RQ, ceny Rn) = max(Gn_l, R,,-,,), Go = 0,

where R, = Y_5_, [Tr_, e**. The statistic R, may be interpreted as the likelihood ratio averaged
over the flat (uniform) distribution of the moment of track appearance.

It is easy to show that {R,} obeys the recursive relation

(6.3) R, = exp(As)(1 + Ro-1), Ro=0.

Both statistics, L, and G,, can be used for testing the above hypotheses either in the fixed
interval or sequentially.

6.3. Detection Algorithm 1: Fixed Sliding Window. The hypotheses H; », and Hj are
tested in a sliding window of length T' at each current time instant n, i.e.

“Hipg : P(Yarrir) = an(Yoiria) H po(Yk) X le (Ye) x H po(Ye)” ,
k=n—T+1 k=7+1

“Ho :p(Ynn——T+1) = po(Y, T+1 H po(Yz)”
k=n—-T+1

In this case the statistics Lt and Gr,, are determined by

(6.4) Lz = max(Lyk-1, Uk),
(6.5) Uk=Ak+U,:-_1, k=n-T+1,...,n,
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and

(6.6) Gr,. = max(Gr-1, Re),

(6.7) Ri=eM(14+Ry,), k=n-T+1,...,n,

with the initial conditions L7, 7 = Up—1 = Grn—1 = Ra7 = 0.

According to the adaptive Bayesian approach, the procedures of testing the hypothesis H; against
H, have the form

1 if Ly, 2 a,
(6.8) dk, = { "

0 otherwise,

6.9 d$, =
(69) & 0 otherwise,

{1 if Grn> B,

where a, B are thresholds that are defined on the basis of the given probability of false alarm
and d = 1 stands for the decision on target presence while d = 0 is the decision on its absence.
It should be emphasized that in this subsection we pursue the goal of detection of the target
track appearance regardless of the possibility of its disappearance in the analyzed observation
interval. In other words, the unknown moment of target disappearance is considered as a nuisance
parameter. A different setting when both target’s appearance and disappearance should be
detected will be considered in the next two sections.

We now notice the following remarkable property of the tests (6.8) and (6.9). Since -

Lr,= max U
T = Pii<k<n ©)

we have
{d},=0}={Ur<aforall n—T+1<k<n}.
This shows that the non-sequential test (6.8) is equivalent to the sequential test which is defined
by the stopping time :
(6.10) To(T,n) =min{n —T+1<k<n:U; >a}, 7,(T,n)=o0 if no such k.

If 7,(T,n) < oo, then the hypothesis H; is accepted (target track is present), while if 7,(T,n) =
o0, the hypothesis Hy (target is absent) is accepted. The same argument is applied to show that
the non-sequential test (6.9) is equivalent to the sequential one

(6.11) 75(T,n) =min{n —T+1<k<n:Ry>B}, 7p(T,n)= o0 ifnosuchk.

The sequential procedures (6.10) and (6.11) allow us to achieve exactly the same probabilities
of false alarm and target missing as the initial tests (6.8) and (6.9), respectively. In addition,
they have an advantage: the time delay in signal detection is less. See Figure 3 for graphical
explanation of the above argument.
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A

L, o
a threshold

1=\

window
—
»  time

a-T+1 T, (detection) n

Figure 3. Detection in the sliding window: the statistic U, exceeds the threshold
at random moment 7,, which is less than the size of the sliding window T'. |

We also observe the following interesting fact. The statistic Uy is nothing but the CUSUM
statistic, which is defined in the standard CUSUM procedure as

k

U, = max A
k Sk s)
- s=A

i.e. as the maximum of the LLR over unknown moment of signal appearance only. In turn, the
statistic R, is nothing but the quasi-Bayesian statistic, which is the limit form of the Bayesian
statistic (the Shiryaev-Roberts-Girshik-Rubin statistic). This shows that the presence of an
additional nuisance parameter — moment of signal disappearance -, does not affect the final
structure of the test procedures. But it certainly does affect the detection performance, since
the accumulated SNR becomes less as 7y decreases.

Another possible modification of the algorithm is to use the statistic Uy with reflection from zero
barrier,

(6.12) Uk = (Ak -+ Uk_1)+ , k>1, ﬁo =0,

in place of Uy, in (6.10). Obviously, these two tests have the same performance as long as the
threshold is positive. Indeed, it is easy to see that the trajectories of the statistics Uy and Uk
coincide in the non-negative half-plain.

6.4. Detection Algorithm 2: Fully Sequential Procedure. We now change the problem
set-up and consider the fully sequential procedure. To be specific, we assume that kK = n,n—1,...
and the decision about target presence or absence is made at each moment. This case is probably
the most relevant to the IRST surveillance systems, which work for a long time periodically raising
false alarms.

It is easy to see that the generalized LLR L_q 5 := Ly, is

Ln =>IIla,X(Un, Un—la e ))




-

20 CENTER FOR APPLIED MATHEMATICAL SCIENCES, USC

where Uy is defined in (6.5). Formally the sequential algorithm that solves the problem is
identified with the stopping time -

7, = inf{n: L, > a}.
The stopping time 7, can be rewritten as
(6.13) 7o = inf{n : U, > a},

which is exactly the CUSUM procedure. Indeed, the decision on target absence (d, = 0), which
is equivalent to observation continuation at time n, is made when

{Ln<a,Lp1<a, -} ={Up<a,Upy<a,}.

Thus, again prior uncertainty with regard to the moment of disappearance does not affect the
structure of the detection algorithm (if -y is considered as a nuisance parameter) but it does affect
its performance. '

It is important to understand that the algorithm (6.13) requires additional strategy after the
decision d =1 v(target appeared) is made. Since we expect multiple signal appearances, one may
not simply stop observations after this decision is made. One way to handle this problem is to
set U, = 0 when 7, = n and to start all over again (immediate renewal). Then the algorithm
is immediately ready to detect the next target. In this case the CUSUM statistic is modified
(compared to (6.5)) as follows

(614) Un = An +U, —1]1{0<Un—-1<a},

where Iy} is the indicator of the set Y. This modification has, however, one drawback: it may
(and usually does) lead to multiple detections of the same signal and hence requires additional
identification logic. '

Another reasonable way is to use the detection rule (6.13) with pure CUSUM (6.5) supplemented
by the following logic for new target detection. Let v, be the first time such that U, goes below
the threshold a after exceeding. To be precise,

v, =inf{n > 7, : U, < a}.

Then for 7, < k < v, — 1, one confirms the presence of the same target, while if for some m > 1,
U,,+m > a, then we make the decision that a new target track appears at time v, +m. In other
words, if the i—th target was detected at time ) and confirmed till ) — 1, then the (i+1)—th
target is detected at

7 = inf{n > v : U, > a}

and its track is confirmed till the moment &Y — 1, where

Y = inf{n > 7Y . U, < a}.

We also note that one may replace the statistic (6.14) by the statistic

(6.15) Un = (A + Un—1)L{o<An+Un-1<a} -

This replacement does not affect performance.
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Applying a similar argument to the quasi-Bayesian statistic G,,, we obtain that the stopping rule
1 = inf{n : G, > B}

can be rewritten as

(6.16) 1 = inf{n : R, > B}.

In the case of immediate renewal the average likelihood ratio R, is computed recursively according
to the formula

(617) Rn = eXp(A,,L) (1 -+ Rn—lll{Rn_1<B}) .

The same logic as above can be used to detect not only the fact of target appearance but also its
disappearance. However, in the case of multiple targets it is better to consider a more complex
set of hypotheses that would include at least three alternatives: the last signal did not appear,
appeared but is still present, appeared and disappeared. This case is considered in the next
section.

We stress once again that the statistic R, may be interpreted as the average likelihood ratio over
the uniform distribution of the X on the interval [1,n], while the exp(U,) is the maximum of the
same likelihood ratio over A € (1,n].

The method (6.16) has an advantage over the generalized CUSUM algorithm — the statistic
R, = R, — n is a zero-mean martingale with respect to Py regardless of the i.i.d. assumption
on the observations. As a result, if one sets B = 1/Fr, then the frequency of false alarms is
upper bounded by the prespecified value Fr (see Section 6.7.1 for details). In other words, the
threshold B is easily estimated for a large class of models. There is no similar result for the
CUSUM statistic U,.

6.5. Algorithm 3: Joint Detection of Track Appearance and Disappearance. Consider
an extended decision making process assuming that after each decision on target disappearance
the previous data are discarded. Specifically, we accept the following logic:

1. If the decision that the i—th target disappeared is made (d; = DA), then one of the two
decisions may be made — the (i + 1)—th (new) “target did not appear” (d;+1 = NA =0) or
the (i 4+ 1)—th “target appeared and is still present” (di1; = A&P).

2. If the decision d;;; = 1 that the (¢ + 1)—th target appeared is made, then one of the
two decisions may be made — “target is still present” (d;;1 = P) or “target disappeared”
(di+1 = DA)

The statistics L, and G,, are then the likelihood (relative to Hy — target is absent at all) of the
composite (and combined) hypothesis H that includes two sub-alternatives:

“H : target appeared and is still present (Hagp) + target appeared and disappeared (Hagp)”.
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Clearly, at time moment n the likelihood of the subalternative Hagp is determined by the statistic
U,, while the likelihood of the subalternative Hagp by Ln—1 = maxg<n—1 Ug. Thus the structure
of the decision making algorithm may be as follows.

After the decision d; = DA (the i—th target disappeared) is made, the statistic U, is formed
with the null initial condition. This statistic is compared (at each step) with the threshold a. If
U, < a, the observation is continued. Otherwise (U, > a), the decision d;;; =1 (the (i + 1)—th
target appeared) is made, the statistic U, is computed further and also the algorithm starts to
compute the statistic L, with the initial condition Lﬂgm) = UT.S"“)’ where 'r,gi“) is the moment
of detection of the (z + 1)—th target. The difference A, = L,_; — U, is compared with another
threshold b at each step n = 7',5“'1) + 1,’r§i+1) +2,.... If A, < b, then the decision d;;; = P
(still present) is made and the next time step is analyzed. If for some n = V§i+1), A, > b, then
the decision d;; = DA (target disappeared) is made, the statistic L, is not computed, but the
statistic U, is computed for n = V,EHI) +1, V,Ei“) +2,... with the initial condition U @41 = 0.
Then the whole cycle is repeated. ’

Thus, the track appearance of the (i + 1)—th target is detected at the moment
7D = inf{n > v U, > a}

and its disappearance is detected at
v = inf{n > 7 1 A, > b}.

The value of the threshold b may be computed based on the trade-off between the error proba-
bilities due to too early decision about target disappearance and the delay of this decision when
the target really disappears.

\/U"
{¥,} .
Thresholding, a
Data d=1 (appeared) Set zero
initial

\/ ep
conditions
— "‘ LLR of H =HA&p+HA&9 ]

jLAn = Ln—l - Un

\

[ Thresholding, b ——>
~ d =DA (disappeared)

Figure 4. Block diagram of Algorithm 3
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Figure 5. Detection of track appearance/disappearance by Algorithm 3

The similar decision making algorithm may be built upon the statistics R, and G,. Then the
appearance of the (i + 1)—th target is detected at the moment

7 — inf{n > 7 : log R, > log B}
while its disappearance is detected at time
70 = inf{n > 79 : A, > ¢},
where A, = log Gn_, — log R,, with the initial condition Afg) = 0 and where c is a threshold.

The block diagram of the algorithm and the typical behavior of the decision statistics are shown
in Figure 4 and Figure 5, respectively.

6.6. Adaptive Detection Algorithms. Recall that in general the position of the targetis
unknown and the density p; (Y% | 0x) depends on the parameter 6, that characterizes the position.
Then instead of unknown 6 one may use the estimate of the position. This estimate can be
obtained by applying the TbD procedure (based on ONF). Thus the development of adaptive
versions of the above detection algorithms is needed.

The statistics U, = Up(by,...,0,) and R, = R,(6s,...,0,) are the functions of the sequence of
theta’s till time n. Thus the developed procedures can not be applied directly. If the 6, can be
estimated (this is the case in our system), then the natural solution is to use the statistics U, =
Un(6s,...,6,) and R, = R,(by,..., 6,,), which are computed based on the recursive formulas

Un = An(én) + 0:—1) Rn = CAn(én)(l + Rn-—l) .
Here 0, = 0, (Y?) is an estimate of 6 based on the previous k observations.

However, it is very difficult to evaluate the performance of the corresponding adaptive algorithms.
The reason is that U, is not a CUSUM and R, is not an average likelihood ratio anymore. In
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fact, the exp{An(6n)} is not the partial likelihood ratio, since py (Y% | 0 (YF)) is not a probability
density. Particularly, the most important question of how to choose the thresholds remains open.

To avoid this difficulty we propose the following trick. At stage k instead of using the estimate
0), we propose to use the one stage delayed estimate 0k_1(Y1'°"1). In other words, instead of U,
and R, we will use the statistics U} and R, which satisfy the recursions

(6.18) U, =A;, + [U;_1]+, n=23,..., U =0

(6.19) R:=eM(1+R:_), n=23,..., R =0,

with A} = A, (An-1). The corresponding adaptive target detection procedures have the form
(6.20) ¥ =inf{n >2:U,; > a},

(6.21) 75 =inf{n > 2: R; > B}.

Since p1(Yy | f,_1) is the probability density for any Y"~!—measurable estimate of 6,, A} is the
log-likelihood ratio. As a result, the statistics (6.18), (6.19) preserve most of the nice properties
of the former statistics U, and R,. In particular, R} — n is a Py—martingale with mean zero.

This fact allows us to upper bound the frequency of false alarms in the adaptive algorithms
regardless of specific pre-change and post-change distributions (see Section 6.7.1).

The block-diagram of a typical adaptive track appearance/disappearance detection algorithm
that uses the estimates of target location from the ONF-based TbD scheme is shown in Figure 6.

A

TbD (ONF) for Gk Decision Statistics U n Thresholdin
"| Position Estimation "|(CUSUM or ALLR)| _ | g
{I;} Y Rn l
Track Detection

Figure 6. Block diagram of a typical adaptive detection algorithm

6.7. Choice of Thresholds and Performance Evaluation. In this section we give an ar-
gument and some ideas that can be used for performance evaluation of the proposed detection
algorithms. We focus on the first two algorithms. The analysis of the third algorithm is more
difficult and we leave this problem for the future.

In both algorithms (Algorithm 1 and Algorithm 2) it is desirable to fix the probability of false
alarm P, in a given fixed interval of length T. We note that while in Algorithm 1 this is the
length of the sliding window, in Algorithm 2 this is the “artificial”, auxiliary parameter that is
defined based on tactical conditions*. For the fully sequential algorithms (Algorithm 2) it is also

41f the dense flow of targets from a particular direction is expected, T’ should be chosen much less than the
typical average duration of a signal. Otherwise T should be comparable with the average time of target presence.
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reasonable to fix the frequency of false alarms, Fr = 1/ Ey7, at the specified level Fr. In the next
subsection we show that it may be done in the general, not necessarily i.i.d. case.

6.7.1. Upper Bounds for the Frequency of False Alarms. Consider the general case
where observations can be dependent and/or non-stationary. To be specific, assume that under
Hy, p(Y?) = po(Y7"), while if the target appears at the moment A and is still present at time n
the model is

(7)) = po(Y'\ 1) X p1(Yy' IYA 1)

where po(-) is the joint density of the noise and p;(-) describes probabilistic properties of the
mixture of signal and noise. By g% (YI") ?35(—:,’%,7 denote the likelihood ratio of the hypotheses
H, and Hy. Obviously,

n D1 Y, YA !
=g gr  where g§= %},;:—Yx—l%
1

Hence for the CUSUM and the average likelihood ratio statistics we have

(6.22) U, =: maxlog g} = max(0, max log gy ') +loggn =loggr + Uy, Up=0,

n n—1
(623)  Ru= gi=gr> gv'+di=gn(1+R.), Ro=0.

Particularly, in the i.i.d. case log g*(Yy*) = An(Ys) and the relations (6.22) and (6.23) coincide
with (6.2) and (6.3), respectively. In the latter case both statistics are also Markov processes,
which helps to evaluate performance of the detection algorithms. But in general the statistics
are non-Markov and the analysis is more difficult.

The most important question is how to choose the thresholds in order to guarantee a specified
false alarm rate. To answer this question we first observe that Eq(g7 | Y*™!) = 1 for any n > 1
and any model. As a result, it is easily seen that for every n > 1 the statistic R, —n is a
Py—martingale with mean zero,

Eo(R,—n|Y{")=Ra1—(n—1), EoR,=n,
and this is valid for an arbitrary model.

Then, by the optional stopping theorem, for any Markov time 7, EqoR, = Eq7, while by the
definition of the stopping time 7g, EoRz, > B. This implies

(6.24) Ey7g > B,
which holds for any model of signal and noise. Therefore if we set
(6.25) B =1/F,

then the frequency of false alarms will be upper bounded by Fr.
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It turns out that the martingale property of the statistic R, can be used to obtain the upper
bound for the frequency of false alarms in the CUSUM procedure. Indeed, for any n > 1

exp(Un) = max gf < Rn =) g%
A=1

1<A<n
and hence on the event {7, < oo}, exp(U,) < R,,. Thus, if Eq7, < 0o, then
e® < E, exp(UTa) < EORra = EOTa )

where the left inequality follows from the definition of the stopping time 7, and the right equality
from the martingale property of R,. This shows that for any model (not necessarily i.i.d.) that
guarantees finiteness of Ey7, we have the inequality

(6.26) Eor, > €°.
Hence if
(6.27) a = log(1/Fr),

then the frequency of false alarms in the CUSUM-type procedure is upper bounded by Fr.

Finally, we note that (6.24) and (6.26) also hold for the adaptive sequential algorithms (6.20),
(6.21), since these algorithms are particular cases of (6.22), (6.23) with g} = exp{A;}.

6.7.2. The Case of i.i.d. Observations. We first observe that in the i.i.d. case the statistic
U,, is a Markov process with the transition probability densities (under H;, i =0, 1),
(6.28) Di(Un|tn-1) = fi(un — g(ta-1)),

where f;(y) is the probability density of the LLR Ay = Uy — g(Ui-1) under H;; g(y) = y™ for
Algorithm 1 (fixed sliding window) and g(y) = yljo<y<a} for Algorithm 2 with immediate renewal
(see (6.14)). So is the statistic r, = log R, with the transition probability density

Di(tn | Tho1 = Um—l) = fi (Un - log(l + eu"“lﬂ{un_1<b}))

for the quasi-Bayesian procedure (see (6.17)). The analysis of these algorithms may be done by
using the renewal theory (see, e.g., [20, 46, 59]).

In what follows we consider only the CUSUM-type procedure. For the quasi-Bayesian algorithm
all formulas are similar. The false alarm probability is

(6.29) Pu(T,a) = Py(r, <T)=1—- Po(lh < a,...,Ur < a),
while the target missing probability is
(6.30) Pris(T,7,A) = Py (7 > T) = Pry(Uh < q,...,Ur < a),
where the statistic U, obeys the recursion
(6.31) U,=A,+9({Un-1), n=1,...,T.
The threshold is chosen from the equation

P (T, a) = ay,
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where a is a specified false alarm rate. Therefore to choose the thresholds and to evaluate the
probabilities of correct detection one needs to find the probability of entry in the set [a,00) by
the Markov process U, during the time T'. This process starts from 0 for Algorithm 1 and from
some random point in (—o0, a) for Algorithm 2.

In general, let {X,,0<n<T}, Xo=1x (z is fixed) be a Markov process with the transition
density f(y, z) (Xa_1 = 2 — X, = y). Define the system of functions pi(y,z) by the recursion

P (y,7) = / oy, ) f(z0)dz, k21,

(6.32) y
ne) =Fyz)  whee Fuo)= [ flaa)ds

The function py(y,z) is nothing but the conditional probability of the event {Xr <y, X1 <
., X3 < a} given Xo = z. Then

(6.33) P(X,<a,...,Xr<a|Xo=2z)=pr(az).

6.7.3. Performance of Algorithm 1. Similar to (6.32) for i = 0,1, define the functions
p{ (y,) by

hwa) = [ wase-adn k21,

p(y,z) = Fi(y—=z7),

where f;(y — «) is the transition density function of the statistic U, (under H;) that satisfies
(6.31) with g(U,_1) = U;\_, and the null initial condition, Up = 0. The probabilities of errors are
then computed as follows

(6.34)

(6.35) Pu(T,a) =1—p(a,0);
(6.36) Pois(T, A, 7v,a) = pg})(a, 0), if A<n-T+1,y>n.

If A >n—T+1or/and v < n, then the situation is more delicate. It may be shown that in this
case the probability of target missing

Pmls T >‘ Y, a / / pq('zo—)-'y p'(~/1-)~)\+1(d€) ’r’)pE\O)l(d’r]? 0)

if A>n—-T+4+1,v<n.

(6.37)

" To obtain the mis-detection probability for {A <n—T+1,y <n} and {A >n—-T+1,y > n},

one has to put
pQ,(dn,0) =8(n)dn  for {A<n-T+1,7<n},
pf?l,,(a,f)=1 for {(A>n—-T+1,yv>n}

n (6.37) (6(z) being a delta-function). Particularly, this yields the relation (6.36).
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It is worth mentioning that the probabilities pff) (a,0) satisfy the integral equations

W0 = [ sh@an@d k21,

—0o0

(6.38) _
P (2) =1,
which are simpler than (6.34).

The formulas (6.35)-(6.37) determine the performance in terms of the probabilities of false alarm
P;, and target missing Pp;s at each current time n within the window of the length 7. In
particular, the threshold a is found from the equation (see (6.29))

1—ag =p(a,0)

where the function p&g) (a,0) satisfies the recursive relation (integral equation) (6.38). Also, the
probability of target missing in the interval of its presence, [}, 7], can be approximated by®

Puis(y — A+ 1,0) = p,(yl_),\ﬂ(a, 0).
The following elementary estimates are useful for initial choice of threshold and target missing
probability evaluation:
(6.39) Pfa(T, a) Z Po(ST Z a), Pmis(')’ . + 1, a) S 1-— P/\:’Y(S’Y - S,\_l Z a)
where S, = > gy A

Along with the probabilities of errors it is interesting to evaluate the mean time delay in target
detection E) ,{7,(T,n) — A|7a(T,n) > A} (in order to estimate benefits of the sequential scheme
(6.10) compared to the direct non-sequential test (6.8)). Here E, , is the symbol of expectation

for the given values of A and 7. By

1= [ e ] s

denote the Kullback-Leibler information number. In case when 7' > a/I, v — A > a/I, and a is
sufficiently large (oyq is small) the mean detection delay may be approximated by

B {1e(T,n) — M7a(T,n) > A} = a/I.

6.7.4. Performance of Algorithm 2. For Algorithm 2, reasonable performance may be ex-
pressed in terms of the frequency of false alarms Fr = 1/Ey7, (Eo7, is the mean time between
false alarms) and the detection delay E),{7, — A|7, > A}. However, such characteristics as the
probabilities of false alarm and target detection in the fixed interval of the length T are also of
interest.

For Algorithm 2 with immediate renewal we have
(6.40) Fr < exp(—a), Ex,{ra— Al7a> A} =a/l.

5This formula is approximate, since Uy_; is a random variable belonging to the interval (—oc,a). For A =11it

is exact.
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The first formula in (6.40) follows from (6.26) and the second formula is valid when v~ A > a/I
and a is sufficiently large (Fr is small). According to the first inequality in (6.40) the threshold
may be chosen as a = log(1/FT) to guarantee the frequency of false alarms Fr < Fr, where Fr is
a specified level.

However, it is even more reasonable to choose the threshold based on the specified probability
of false alarm P, (T, @) within the time interval of the length T' at each current point in time n.
Then the mean detection delay may be approximately evaluated by the second equality in (6.40)
and the algorithm is optimal — it minimizes the mean detection delay among all algorithms with
this kind of constraints (at least for sufficiently large a).

To obtain the probabilities of errors in the fixed interval T' we note that the statistic U, is again
the Markov process which obeys the recursion (6.31) with the random initial condition Uy = u
and with g(Up—1) = Un-1l0<v,_,<a}- The random variable u has the distribution Gy (y), which
is nothing but a stationary distribution of the Markov process {U,} under the hypothesis Hy
(target is absent). This distribution satisfies the integral equation

Go(-’lf) = /FO(-'E _'3]1{0<s<a}) dGO(S)’

where Fy(y) is the distribution function of A, under Hy. Thus, the false alarm probability is
found as

Pp(T,a) = /a P (T, a,z) dGo(z),

where P, (T, a, ) is the probability (6.29) in case when Uy = z, < a. This last probability is

computed according to (6.33) with pr(a,z) = pg?)(a, z), which is defined by the recursive relation

png)(a': x) = / cho_)l(a, Z)fo(z - x]l{0<:c<a}) dZ, k >1 ) pSO)(a') 1,') =1.

-0

As we mentioned above, the analysis of the proposed algorithms may be done based on the
renewal theory. This theory allows for more accurate performance evaluation as compared to
the above formulas (for the mean detection delay and frequency of false alarms). The detailed
analysis of the proposed algorithms and their tuning will be done in the near future (see also
Section 6.8, relationships (6.41),(6.42) for more accurate estimates in a Gaussian case).

6.8. TbD Model with Spatio-Temporal Matched Filter. Let us apply the above results
to the case where the target moves along a deterministic trajectory. Then the spatio-temporal
matched filter is the optimal tool for TbD. Since target’s velocity and direction of motion are
unknown, the bank of filters should be used and the detection is done in each channel indepen-
dently. Assume also that after clutter suppression the residual clutter (plus noise) samples are
ii.d. and Gaussian, N'(0,0?) (see the model (5.9)). Then the LLR Ay is

1 1
,J 1,

In the above formula we implicitly used the assumption that the target moves with the constant
given speed v and in a given direction (i.e., in the particular “velocity-angle” channel). This
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formula is readily generalized for arbitrary (but known) dynamics. Note that here we use the
notation Y; = {Z;;(k)}.

According to (6.31) the statistic U,(z) is calculated as
Un(x) =An(x) +g(Un—1(x))’ n=12,...

Then the above algorithms are applied in each channel independently (here we mean the channels
that are related to different values of the initial position ).

If the signal is exactly located in the given channel, then the LLRs {Ax(z)} are i.i.d. Gaussian
random variables with parameters

EA, = —EoA, = 1p, VargA; = VariAg = p,
where p = 25 Y, ; h(z:;)” is SNR.

Performance of the developed algorithms is evaluated by formulas obtained above in Section 6.7

with the densities
_ L (e 1 (e
fo(y)—ﬁw( - ) (@) ﬁw< ﬁ),

where ((y) is a standard normal density function,

In particular, for Algorithm 1 (sliding window), the simplest estimates for probabilities of errors
are given by (see (6.39))

2a + pT
vpT

where ®(y) is a standard normal distribution function.

P (T, a) > 1—@(

), Pmis(')’—)\"f'l,a)gq)(za_p(’y_)‘-i-l))

ply—A+1)

Also, for the sequential Algorithm 2 with immediate renewal for sufficiently large a and v > 2a/p
the following approximate estimates hold:

Fr 5 Be™®,
(6.41) ,
Ex {ra=A|Te2 A}~ ;(a+z+0) ,
where
5 - %exp{—zm 1o (—W)} ;
(6.42)

o =148 - PN [ 3w (BVR) - 1RO (-1VER)] 5
C = E;[min{0, ming>1 Y ,_, Ax}] € [0, -1].
These formulas were obtained by using the nonlinear renewal theory [59]. They improve the

upper bounds for the frequency of false alarms and the estimates for the mean detection delay
presented above in the general case (see (6.26), (6.27), (6.40)).
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Instead of making decisions on target presence in each cha.nnel we may apply the algorithm,
which is based on the maximum likelihood statistic,

M, =maxU,(z), n=12,...

This statistic, however, does not allow for a convenient recursive computation. To simplify the
algorithm we use the “trick”, which was already used in Section 6.6 to build adaptive detection
algorithms in general case. By z} = z;(Z") denote the maximum likelihood estimate of the
target location, i.e.

z, = arg max Z A(z).

k=1
The decision statistic is defined by the recursive formula
Ur=MA(z5_1) +9(Us_y), n=23,..., Uf=0.

The “stopping rule” is then defined by
i =inf{n >2:U; > a}.

Thus, we use the one-stage delayed estimates of the signal location in the partial LLR A,. The
threshold is chosen according to the relation (6.27), which allows us to upper bound the false
alarm rate. This algorithm is especially attractive when only a single target is expected. In the
multi-target situation the previous algorithm (decisions in independent channels) is perhaps the
best one can do.

6.9. TbD Model with Optimal Nonlinear Filter. In the context of TbD with optimal
nonlinear filtering (see Section 5) the estimate of the partial LLR A, obtained on the basis of
previous n — 1 observations is defined by

* 7 1 7
(6.43) AL = ; hn—1(245) Zi(k) — 3 ; b1 (zi)?

where Ay(zi;) = h(Xe — zi;) and X is the estimate of the signal location based on the k
observations. The latter estimate is formed at the output of the optimal nonlinear filter that
tracks the target location. We will consider two estimates — the mean estimate and the maximum
a posteriori estimate, which are defined below in (7.3) and (7.4) (see Section 7). Thus, the above
results are applied by using the LLR estimate (6.43).

To be precise, the adaptive CUSUM statistic is defined by the recursion
(6.44) Ur=A:+g(U,), n=23,..., Ur=0
and the “stopping rule” is

(6.45) i =inf{n >2: U} > a}.

In other words, again we have used the same trick — the true LLR A, at stage n is replaced with
its estimate A’ = A,(X,-1) obtained based on the previous n — 1 observations. Instead of X1
one may use the one step predicted (extrapolated) estimate X;.
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The alternative algorithm (see (6.19), (6.21)) is of the form
(6.46) 7 =inf{n >2: R® > B},
where the estimate of the average likelihood ratio R} satisfies the recursion

(647) R: = eXp{A:}(l + R:,_l]l{R;‘L_1<B})) n= 2) 3’ ey RI =0.

The results of application of these algorithms will be discussed in Section 7.4.

7. Testing of the Developed Algorithms for IRST Data. Results of Experiments
and Simulation

In the examples considered below because of the uncertainty of possible behavior of a non-
cooperative target, the alignment of successive frames is extremely difficult. The frame alignment
is done recursively along the maximum posterior distribution path on the basis of the optimal
nonlinear filtering. Use of nonlinear algorithms is necessitated by the specifics of the observation
structure. Indeed, in TbD the observation function (signal) S(k,r) is highly sharp (essentially a
delta-function in small domain like 2 x 2 or 3 x 3 pixels). In addition, IR imaging sensors provide
angle-only measurements. These types of measurements, especially in low S(N+C)R situations,
practically rule out application of extended Kalman and similar filters. As already mentioned
above, application of multi-dimensional matched filters and banks of velocity filters is possible
only for constant speed targets with linear trajectories, which is not the case in the examples
considered. At the same time the proposed ONF-based algorithm works perfectly well even for
very low S(N+C)R (up to —6dB after clutter removal). Particularly, it may be seen from the
figures presented below that the uncertainty is completely overcome after processing of several
frames (in these examples S(N+C)R ranges from —1dB to —7dB after simple pre-processing and
clutter removal).

The developed adaptive detection algorithms that use the estimates of target location constructed
on the basis of ONF TbD work also perfectly well. Tracks of randomly appearing and disap-
pearing targets are reliably detected up to —7dB and the algorithms allow us to obtain low false
alarm rate even in a heavy cluttered background.

7.1. Clutter Removal: Real IRST Data. The proposed nonparametric approach to clut-
ter removal (see Section 4.1) has certain advantages over conventional methods. This fact is
illustrated by Figure 7 which presents the results of kernel smoothing of IR data. The ‘local
mean removal’ procedure used for clutter rejection in a series of papers by Reed et al. (see [39],
[38]) is equivalent to a kernel estimator with a product kernel K generated by uniform kernels
Ki(z) = Ka(z) = 0.5Ij5<1}. It may be seen that the Fuller kernel (see [26]) provides superior
smoothing performance compared to the uniform kernel. The reason is that our approach relies
on the trade-off between a squared bias and a variance of estimators while the uniform kernel
minimizes only the asymptotic variance of estimators and hence induces a large bias term.
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(a) IR data: target plus clutter

20}
40}
60}

80§

20 40 60 80 100

(c) Residuals after uniform kernel
20
40

60

80

20 40 60 80 100

v(b) Kernels in [-1,1]

1.5

+ Fuller
— triangylar

-- Epanechnikov

E\uhiform
Q

-1 -0.5 0 0.5 1

(d) Residuals after Fuller kernel

20
40
60
s0 [NV

100 e : “li :
20 40 60 80 100

Figure 7. NAVY IRSS sensor - the LAPTEX field test. Original IR image (a)
and the results of clutter removal by uniform kernel (c) and Fuller kernel (d)

7.2. Example 1: TbD of a Target Based on IRST Data. The first example presented
is a naive model of an actively maneuvering air target which flies overhead over a stationary
observer situated on the ground. The complete field of view of the observer is modeled by
a square [0,1] x [0,1] with the horizon line at y = 0.1. The target initially appears close to
the horizon at a point uniformly distributed inside a rectangle [0.2,0.8] x [0.1,0.15], then the
horizontal coordinate evolves as a Wiener process with variance o2t, and the vertical coordinate
as an exponent e”t.

Formally, the trajectory model is described by a stochastic differential equation®
Xo ~ Unif(0.2,0.8), Y, ~ Unif(0.1, 0.15);
dX; = adW,, a=0.05, dY; = pYidt, [ =0.6.
The target was assumed to emit a 3 X 3 pixels signature which was observed with additive
Gaussian white noise. More precisely, let § be the size of a pixel in the observed image in both

6Here the components of the vector r are denoted by (z,y). Also X = (X,Y).
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horizontal and vertical directions. The target shape is given by

Wz, y) = Yjeicasszy Liwicsszy  (2,9) € R,

and the observation at time moment ¢ = kA, A = 0.05 with noise of standard deviation o and
SNR = 20log I is

Zi'(k) = h(XkA - (Z - 1)(5, Y;cA — (] - 1)5) + 0§ij(k), é‘”(k) ~ Norm(O, 1) iid.

Examples of a target trajectory and IR data images are shown in Figure 8 and Figure 9.

Several experimental results follow.

e For moderate noise (¢ = 1.232, SNR= —1.8dB) the simplest and fastest Haar basis works
quite well (see Figure 10).

e For more intense noise (o = 1.581, SNR= —4.0dB), the algorithm utilizing Haar basis loses
track occasionally but later recovers it (see Figure 11).

e For borderline cases (¢ = 1.679, SNR= —4.5dB), the Haar basis no longer provides good
tracking, however smoother wavelet bases of the same resolution (such as Coiflet-1) still
achieve good tracking accuracy (see Figures 12 and 13; both simulations were run on exactly
the same observations, and the difference in the quality of tracking is quite obvious).

e With larger noise (¢ = 2.109, SNR= —6.5dB), the optimal filter fails to track the target,
no matter what basis is utilized.

Trajectory
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Figure 8. Typical trajectory of overhead target
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7.3. Example 2: TbD of a Surface Skimming Missile. Assume that a stationary obser-
vation platform (camera) is at a fixed height h; above the sea level, and a target approaches
with constant velocity v at constant height h; < hy above the sea level. Denote the Earth radius
R = 63,750,000m. Projection center (the focal point of the camera) is situated at the point
with coordinates (0,0, R + hy). At time moment ¢t = 0 the target appears at the horizon at
angle 8 clockwise from the direction of y—axis and moves at angle ~ to the line of sight from the
observer. Because of rotational invariance after projecting onto the observation cylinder, assume
that 3 = 0.

The three dimensional coordinate system used next has the origin at the center of the Earth,
the z—axis passing vertically through the observer, the y—axis passing horizontally through the
observer in the direction of the point where the target becomes first visible on the horizon, and
z—axis oriented so that the zyz coordinate system is a Cartesian right hand coordinate system.

Zo =O,
__R 2 2
o= (\/2Rh1 + B3+ \/2Rhy + h2> ,
R? 1 . 2
o= T~ R \/th1 +h2/2Rhy + 13,
z; = (R+ hg)siny SinR:)-hz,
= 7yp COS vt — 2y COS sin-——vt——
2 = 2o COS vt + 75 coS 7y sin vt
1 A0 08 ey T Y s S T

After projecting onto an observation cylinder with radius r (the focal length of the camera), the
equation of the motion in two dimensional coordinates (6, 2?) are as follows

Tt Tz
0; = arctan —, 20 =

Yo Vai+g

The observed signal was assumed to be a 3 x 3 pixels target with additive Gaussian white noise.
More precisely, let 6; be the size of a pixel in the horizontal (coordinate 6) direction, and §; be
the pixel size in the vertical (coordinate 2?) direction. The target shape is given by

(7.1) h(z1,2) = Loy <360 /2 Ljwal<aiorep, (%1, 22) € R,

and the observation at time moment ¢, = kA with noise of standard deviation ¢ and SNR
=20log 1 is

gz’ emin + (7/ - 1)617
j zgu’n + (J - 1)62’

(7.2)

2509 = Ok = B s~ )+ 06 (K).
&:;(k) ~ Norm(0,1) i.i.d.

It is important to emphasize that the Gaussian model for the residual clutter and noise is used
only in ONF and detection algorithm development. The algorithms were tested with the use of
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the real IR background obtained from SPAWAR. Particularly, the figures in Section 7.4 below
contain the results of testing for these real cluttered images (i.e., {&;(k)}x>1 in (7.2) are given
realistic frames) with artificially inserted targets whose motion and shape correspond to models

(7.1), (7.2).

7.3.1. TbD of Several Targets. Ability to detect and track several independent targets was
implemented by running the corresponding number of filters in parallel.

The exact updating formulas are given below.

Translation operators. The operator T} translates the argument of a function defined on the
state space along the trajectory of the model #i. Let us denote the trajectory of the model
#i starting at the point (z,y) at time moment ¢ = 0 by ¢*(,z,y), and its inverse with respect
to the variable ¢ (with variables z and y fixed) by ti(g,z,y). Let the function to translate be
f:10,a) x [0;8] x {1} U[0,a) x [-b,b] x {—1} U{0} x {0} x {0} — R. Several cases have to be
split in order to describe the translation operator:

(2,9,1) = z7om f(0,0,0), for z€[0,a), ye [0,¢(z,0,4)),
(¢ (A z,y),1) = f(z,y,1), for z€[0,a), ye€ [0, q'(z,b,—A)),
(¢'(A,z,y),-1) = f(z,y,1), for z€0,a), yE€ [g'(z,b,—A),D),
(@A, z,y),-1) = f(z,y,-1), for z€0,a), ye€l0,d),

(Taf)
(Taf)
(T f)
( ) H(z,~b,—A)

(T4 f)(0,0,0) = e £(0,0,0) / /,, ’ f(z, y,—l)dyd:c

Updating formulas. The unnormalized filtering densities pl(x, y, ) corresponding to the model #!
are recomputed based on observations Z; = {Z,-j(ch)} with time step A according to formulas

Pf)(O,O, 0) =1,
pé(m,y, u)=0, for (z,y,u)# (0,0,0),

P4 (0,0,0) = (TAp{x_1ya)(0,0,0),
HkA(x,y,u,Zk)=exp{d%Zh( =Ty Y — y.ﬂu)ZiJ(kA 20 2Zh’ T —THY— y]) ) }a

4,f 1,j

pgcA ((E, Y, u) = HkA(ma Yy, u, Zk) (TlApl(k—l)A) (‘7;’ Y, u), fOI' (II), Y, ’U,) 7é (07 07 O)
Next, the filtering densities are normalized as follows:

ngcA :pgcA(O O 0 //pgcA(miyi 1) dmd:‘/"'//pgcA(xay’_l) diEdy,

Pra\Z, Y,
7T;cA(""c y,u ) kA,(nz )7
kA
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and two estimates of the position of the I-th target are computed. Namely, the mean-square-error

Xyean //m'/rkA z,y,1 dmdy-l—//mﬂ'kA z,y,—1) dz dy,
Ve / / yTka (2,9, 1) dz dy + / / ymea (2,9, —1) dz dy,

and the maximum a posteriori estimate:

(7.4) (Xl XX Vo) = argn;ayxwch(w,y,u).

estimate:

(7.3)

Both estimates can be used in different situations. The first estimate is theoretically optimal.
However, it usually takes longer to converge to the real position of the target. The second
estimate “detects” the target much faster but is more prone to lose track due to noise.

Precomputing. Computationally, the most expensive part of the algorithm was interpolating
the values of (TApi) on the shifted along the trajectory (and therefore no longer uniform) grid
back to the original uniform grid. To speed up the computations, off-line part of the algorithm
computes a (very sparse) matrix A such that multiplying the vector of values on the non-uniform
grid by A produces the vector of values on the uniform grid.

Two interpolation algorithms were implemented: nearest neighbor interpolation (then matrix
A has only zero and one as elements, and each row has at most one non-zero), and linear
interpolation using known values on a triangle surrounding a point on the new grid. ' Linear
interpolation proved to be much more stable and precise in simulations.

7.3.2. Simulation results. The simulation producing results included below used two targets
and the noise with standard deviation o = 1.4 which corresponds to SNR = —2.9dB.

e In Figure 17 (¢ = 1s), the target is present but not yet detected.

e In Figure 18 (t = 6s), a single sharp peak has formed, and it follows the target.

e In Figure 19 (¢ = 11s), the second target just appears at the horizon, algorithm doesn’t
track it yet.

e In Figure 20 (¢ = 16s), both targets were detected and are being tracked.

Also we refer to enclosed files (multiframe GIF file a6.gif or MS video file a6.avi) to see
the incoming observation frames (Navy IRSS sensor — the LAPTEX field test) with very dim
synthetic target inserted. The second pair of files (multiframe GIF file a6.gif or MS video file
ab5.avi) shows the locations of two targets being tracked and the filtering density which develops
prominent peaks that follow both targets.
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Figure 15. Surface skimming missile trajectory derivation
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Figure 16. Surface skimming missile trajectories
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x10™ 1=1.0s, SNR=-6.7dB Target: (1.45,-2.50e-004)

TERT

Figure 17. Surface skimming missile tracking, t = 1s

Target: (1.49,-2.20e-004)

Figure 18. Surface skimming missile tracking, ¢t = 6s
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Target: (1.55,~1.94e-004) (4.64,-2.50e-004)

Figure 19. Surface skimming missile tracking, ¢ = 11s

t=16.0s, SNR=-2.2dB Target: (1.66,~1.78e--004) (4.60,-2.20e-004)

Figure 20. Surface skimming missile tracking, ¢ = 16s
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7.4. Appearance/Disappearance Detection of a Skimming Missile. In this section we
present the results of application of the detection algorithms developed in Section 6. The model
is the same as in Section 7.3. The results of TbD (the estimates (7.3) and (7.4) of the signal
location) are used in the LLR estimate (6.43). In the fully sequential CUSUM algorithm, the
adaptive CUSUM statistic U} is computed recursively according to (6.44) and then is compared
to the threshold a (see (6.45)). In the sequential (adaptive) quasi-Bayesian algorithm the estimate
of the logarithm of average likelihood ratio r;; = log R}, is computed according to the recursive
formula (6.47). It is then compared to the threshold log B (see (6.46)).

Figure 21, Figure 22, and Figure 23 illustrate the behavior of the adaptive CUSUM statistic
for different S(N+C)R (SNR = —0.25dB, SNR = —3.62dB, and SNR = —6.6dB, respectively).
Theoretically 0 < r* — U* < logn. We have not observed any substantial difference between
these statistics in our experiments — the difference was always negligible. So we omit the plots
of the statistic 7* and show only the behavior of the adaptive CUSUM. It turns out that the
mean estimate (7.3) provides better results than the maximum posterior estimate (7.4) and we
plot only the CUSUM statistic that uses the former one. It is seen that most of the time the
statistic U* is close to zero or negative when the target is absent. Sometimes, however, peaks
arise. These peaks may be identified with signal presence. But they are typically short and
may be easily distinguished from the peaks due to target. One possible method to discriminate
between false alarms and true target is to make the decision on target presence if there are
several subsequent exceedances (say 3-4) of the threshold. Otherwise the decision on target
absence is made (i.e. a single exceedance is identified with false alarm). When the target appears
the statistic rapidly increases while when it disappears, U,; decreases. In our experiments we
observed visible difference in behavior of U* when the signal appears compared to the case of
its absence up to the SNR —6.6dB. In the pictures the first target appears at time n =1 and
disappears at n = 28. The second target appears at time n = 39 and never disappears.

Figure 24 shows the results of detection of track appearance and disappearance by Algorithm 3
for SNR = —0.25dB and SNR = —6.6dB. The detection of tracks occurs when the adaptive
CUSUM U exceeds the threshold a (the upper one) and track disappearance is detected when
the statistic A¥ = L%_; — U} exceeds the threshold b (the lower one). When the decision on
target disappearance is made, the statistic U}, is renewed form zero, i.e. the detection algorithm
is prepared to detect another target. It is seen that the algorithm is able to detect even very
low SNR targets. The threshold a was chosen such that the false alarm rate 1 false alarm per
minute (i.e., per 60 frames) was guaranteed. The algorithm never raised more than 1 false alarm
and always detected targets with this choice in the analyzed images. To be precise, there are
two targets in the pictures: the first target appears at time n = 1 and disappears at n = 28
while the second one appears at time n = 39 and does not disappear. The algorithm detects the
first target with the delay about 20 seconds (20 frames) for SNR = —6.6dB and 4 — 6 frames
for SNR = —0.25dB. Then the fact of target’s disappearance is detected with very small delay.
Finally the second target is detected with the delay about 5 — 6 frames for SNR = —6.6dB and
2 — 3 frames for SNR = —0.25dB.
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Figure 21. Plots of the adaptive CUSUM. Left — no target. Right — 1st target
appears at n = 1, disappears at n = 28; 2nd appears at n = 39, doesn’t disappear
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Figure 22. Plots of the adaptive CUSUM. Left — no target. Right — 1st target
appears at n = 1, disappears at n = 28; 2nd appears at n = 39, doesn’t disappear

Adaptive CUSUM statistic, no target Adaptive CUSUM statistic, SNR=-6.60dB
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Figure 23. Plots of the adaptive CUSUM. Left ~ no target. Right — 1st target
appears at n = 1, disappears at n = 28; 2nd appears at n = 39, doesn’t disappear
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Figure 24. Detection of track appearance and disappearance by Algorithm 3.
First target appears at n = 1 and disappears at n = 28; second target appears at

n = 39 and doesn’t disappear
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8. Conclusion. Future Research

We believe that real time optimal nonlinear filtering is an emerging information technology of
fundamental importance. The ONF is an advance over conventional EKF techniques and multi-
dimensional (spatio-temporal) matched filters potentially as profound as that of the EKF over
o — B—+ filters. Nonlinear filtering techniques offer the promise of greatly enhanced performance
in a number of DoD related applications: airborne, surface, and subsurface.

We have developed an advanced ONF-based spatio-temporal tracking filter and adaptive track
appearance/disapperance detection algorithms that may be fully incorporated into a complete
end-to-end IRST signal/track processing suite. The developed technology will be of portable
nature and can be incorporated later in various multisensor ATR systems utilizing EO/IR, SAR,
SAS, LIDAR, etc.

In the future we plan to continue this work in the following key directions.

1. Further develop and tune spatio-temporal nonlinear semiparametric algorithms for clutter
removal and jitter compensation.

2. Develop banks of ONF filters for TbD of multiple targets.

Improve and tune track detection and identification algorithms.

4. Test and validate the developed signal/data/track processing system for real IR data (jointly
with Space & Naval Warfare Systems Center, San Diego, CA).

5. Incorporate the developed system into a complete end-to-end IRST signal/track processing
suite (jointly with Space & Naval Warfare Systems Center, San Diego, CA).

w
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